
1 Table of Contents

1 C++ Basics 3

1.1 Overview 3

1.2 Basic Syntax 3

1.3 Comments 4

1.4 Data Types 4

1.5 Typedef 5

1.6 Enum Data Type 5

1.7 Lvalues and Rvalues 6

1.8 Constants/Literals 6

1.9 Access Modifiers 7

1.9.1 Extern Keyword 7

1.9.2 Global Functions 8

1.9.3 Static Keyword 8

1.9.4 Local and Global Variable Initialisation 9

1.9.5 Global Access Summary 10

1.9.6 Side Note: Global Access in C# 10

1.10 Declaration vs Definition 10

1.11 Modifier Types 10

1.12 Storage Classes 11

1.13 Operators 11

1.14 Math Operations and Random Numbers 12

1.15 Function/Class Libraries, Header Files and Namespaces 12

1.16 Loops 12

1.17 Decision Making 13

1.18 Arrays 13

1.19 Strings 13

1.20 Structures 13

1.21 Functions 14

1.22 Main Function 14

1.23 Pointers and References 15

1.23.1 Pointers and References: Overloaded Operators 16

1.23.2 Pointers and References: Const Pointers and References 17

1.23.3 Pointers and References: Null References 17

1.23.4 Pointers and References: Readability 17

1.23.5 Returning Pointers and References 17

1.23.6 Pointers to Arrays, Structures and Classes 18

1.23.7 Pointers to Functions 18

1.24 Date and Time 18

1.25 Basic Input/Output 18

1.25.1 Standard Output Stream (cout) 19

1.25.2 Standard Input Stream (cin) 19

1.25.3 Standard Error Stream (cerr) 19

1.25.4 Standard Log Stream (clog) 19

1.25.5 cout vs cerr vs clog 19

2 C++ Object Oriented 20

2.1 Classes and Objects 20

2.1.1 Basic Syntax 20

2.1.2 Class Access Modifiers and Inheritance 21

2.1.3 Member Functions 22

2.1.4 Constructor and Destructor 23

2.1.5 Dynamic Memory Allocation 24

2.1.6 Copy Constructor 24

2.1.7 Friend Keyword 26

2.1.8 Inline Functions 26

2.1.9 Pointer to Class 27

2.1.10 ‘this’ Class Pointer 27

2.2 Function and Operator Overloading 28

2.2.1 Function Overloading 28

2.2.2 Operator Overloading 28

2.3 Polymorphism 29

2.4 Abstract Classes and Interfaces 30

2.5 Exception Handling 31

2.6 Templates 31

2.7 Preprocessor Directives 32

2.8 Other Concepts in C++ 33

2 C++ Basics

2.1 Overview

C++ is a statically typed (type checking is performed at compile time as opposed to run-time;
the program will be checked for type errors during compilation), compiled, general-purpose,
case-sensitive, free-form programming language that supports procedural, object-oriented,
and generic programming.

C++ is regarded as a middle-level language, as it comprises a combination of both high-level
and low-level language features.

C++ is a superset of C, and therefore virtually any legal C program is a legal C++ program (with
a few notable exceptions, such as the use of the ‘new’ or ‘class’ keywords). Whereas in C#,
everything is inside classes (including the Main() method) this is not the case in C++. However,
C++ fully supports object-oriented programming as well.

C++ consists of:

● The core language and building blocks.
● In-built C++ Standard Library, with a rich set of functions manipulating files, strings etc.
● In-built Standard Template Library (STL), with rich set of methods manipulating data

structures etc.

The ANSI standard ensures that C++ is portable – it can be compiled on any platform.

The primary interfaces of PC Windows and Apple OSX are written in C++.

2.2 Basic Syntax

A C++ program is defined as a collection of objects that communicate with each other by
invoking each other’s methods. The program consist of Classes, Objects (instances of
classes), Methods and Instant Variables (internal class variables that define the State of a
class instance).

#include <iostream> // iostream header is used (input output operations)

using namespace std; // using collection of classes std

// main() is where program execution begins.

int main()

{

 cout << "Hello World" << endl; // prints Hello World

 // endl better than “Hello World\n”, as \n is counted as

 // an extra character, and endl will flush

 // the stream (the i/o stream to screen, file etc.)

 return 0;

}

A C++ identifier is a name used to identify a variable, function, class, module, or any other
user-defined item. An identifier starts with a letter A to Z or a to z or an underscore (_) followed
by zero or more letters, underscores, and digits (0 to 9). Identifiers are case-sensitive.

2.3 Comments

Program comments are explanatory statements that you can include in the C++ code that you
write and helps anyone reading it's source code.

/* Comment out printing of Hello World:

cout << "Hello World"; // prints Hello World

*/

2.4 Data Types

Type Keyword

Boolean bool

Character char

Integer int

Floating point float

Double floating point double

Valueless void

Wide character wchar_t

Several of the basic types can be modified using one or more of these type modifiers:
● signed
● unsigned
● short
● long

Type Typical Bit Width Typical Range

char 1byte -127 to 127 or 0 to 255

unsigned char 1byte 0 to 255

signed char 1byte -127 to 127

int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647

short int 2bytes -32768 to 32767

unsigned short int Range 0 to 65,535

signed short int Range -32768 to 32767

long int 4bytes -2,147,483,648 to 2,147,483,647

signed long int 4bytes same as long int

unsigned long int 4bytes 0 to 4,294,967,295

float 4bytes +/- 3.4e +/- 38 (~7 digits)

double 8bytes +/- 1.7e +/- 308 (~15 digits)

long double 8bytes +/- 1.7e +/- 308 (~15 digits)

wchar_t 2 or 4 bytes 1 wide character. Long version of standard ASCII characters (8-bit)

#include <iostream>
using namespace std;

int main()
{

 cout << "Size of char : " << sizeof(char) << endl;
 cout << "Size of int : " << sizeof(int) << endl;
 return 0;
}

2.5 Typedef

You can create a new name for an existing type using typedef:

typedef int feet;
feet distance;

2.6 Enum Data Type

An enumerated (enum) type declares an optional type name and a set of zero or more identifiers
that can be used as values of the type. Each enumerator is a constant whose type is the
enumeration.

enum color { red, green, blue } c;
c = blue;

By default, the value of the first name is 0, the second name has the value 1, the third has the
value 2, and so on. But you can give a name a specific value by adding an initializer:

enum color { red, green=5, blue };

C++ also allows to define various other types of variables like Pointer, Array, Reference, Data
structures, and Classes.

2.7 Lvalues and Rvalues

There are two kinds of expressions in C++:

lvalue : Expressions that refer to a memory location is called "lvalue" expression. An lvalue may
appear as either the left-hand or right-hand side of an assignment.

rvalue : The term rvalue refers to a data value that is stored at some address in memory. An
rvalue is an expression that cannot have a value assigned to it which means an rvalue may
appear on the right- but not left-hand side of an assignment.

Variables are lvalues and so may appear on the left-hand side of an assignment. Numeric literals
are rvalues and so may not be assigned and can not appear on the left-hand side.

2.8 Constants/Literals

Literals are numbers or text assigned directly by the user – in x = 10; 10 is the literal. Literals
can be divided into Integer Numerals, Floating-Point Numerals, Characters, Strings and Boolean
Values.

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base
or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for decimal.

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent
part. You can represent floating point literals either in decimal form or exponential form.

Boolean literals have two values: true or false.

Character literals are enclosed in single quotes.

String literals are enclosed in double quotes.

Constants can be defined using the const keyword and any of the literals, and cannot be altered
during the execution of the program. Note that variables declared using the const keyword have
internal linkage by default (can only be accessed within the same file); unless the extern keyword
is used (see below for definition of extern and global variables).

The #define preprocessor directive can be used to define a constant value. In this case, the
constant is defined before compile-time.

#define LENGTH 10

#define WIDTH 5
#define NEWLINE '\n'

It is good programming practice to define constants in capital letters.

2.9 Access Modifiers

2.9.1 Extern Keyword

The extern keyword is used to implement ‘global’ variables in C – i.e. variables that can be
accessed and changed from any module (file), as long as they are defined in one of the files, and
a header file with the extern declaration is included in all files (in the definition file as well, to
ensure that the definition and the declaration are consistent).

Using extern int x; tells the compiler that an object of type int called x exists somewhere. It's
not the compiler's job to know where it exists, it just needs to know the type and name so it
knows how to use it. Once all of the source files have been compiled, the linker (program that
links variables to their respective references after compilation) will resolve all of the references
of x to the one definition that it finds in one of the compiled source files. For it to work, the
definition of the x variable needs to have what's called “external linkage”, which basically means
that it needs to be declared outside of a function (at what's usually called “the file scope”) or in a
header file, and without the static keyword (global variables are extern by default).

Example Program using External keyword:

Header File (header.h):

#ifndef HEADER_H
#define HEADER_H

// any source file that includes this will be able to use "global_x"
extern int global_x;

void print_global_x();

#endif

Source File 1:

#include "header.h" // include header file with extern declaration and print_global_x()
 // function declaration

int main()
{
 //set global_x here:
 global_x = 5;

 print_global_x();
}

Source File 2:

#include <iostream>
#include "header.h" // include header file with extern declaration

void print_global_x()
{
 //print global_x here:
 std::cout << global_x << std::endl;
}

Extern Definition from Wikipedia:

The C language (C, C++, C#) does not have a global keyword. However, variables declared
outside a function have "file scope," meaning they are visible within the file. Variables declared
with file scope are visible between their declaration and the end of the compilation unit (.c file)
(unless shadowed by a like-named variable in a nearer scope, such as a local variable); and they
implicitly have external linkage and are thus visible to not only the .c file or compilation
unit containing their declarations but also to every other compilation unit that is linked to form the
complete program. Note that not specifying static is the same as specifying extern: the
default is external linkage. External linkage, however, is not sufficient for such a variable's use in
other files: for a compilation unit to correctly access such a global variable, it will need to know its
type. This is accomplished by declaring the variable in each file using the extern keyword (it will
be declared in each file but may be defined in only one; its value can only be set in one of the
files). Such extern declarations are often placed in a shared header file, since it is common
practice for all .c files in a project to include at least one .h file.

In general, if we want to use a global variable in the current file only, it is good practice to use the
static keyword. If we want to use it in different files, create a definition of the variable in one of the
files, and include a header file with a corresponding extern declaration in all files.

2.9.2 Global Functions

To access a function in File 2 from a function in File 1, the function prototype must be included in
the file scope of File 1; or a header file with the function prototype must be included in File 1 (and
File 2 where the function is defined).

2.9.3 Static Keyword

The static keyword has several uses in C++:

● Declaring static variables in functions: the static variables will persist for the ‘lifetime’ of
the program (as opposed to local variables, which only persist for the duration of the
function that they are declared in). Whenever the function is called again, the variable will
still contain the last value assigned to it.

● Limiting the scope of ‘global’ variables: a variable declared at the top of all functions
without the static keyword, is automatically considered ‘global’ or externally linked, and
can be accessed from another file, if both files contain the variable declaration with the
extern keyword (or include a header file with the declaration). However, if such as
variable is declared as static, this automatically negates the default external linkage of
the variable (and including the extern declaration would produce an error). The variable
then only has a ‘file scope’ (internal linkage), meaning that it can no longer be accessed
from other files using the extern keyword. Static variables are initialized automatically to
0, but it is bad practice to leave them unassigned.

● Limiting the scope of ‘global’ functions: if a function is declared as static, it cannot be
declared and used in a different project file.

● Declaring static variables inside a class definition: the value of the variables will persist in
different instances of the class, and the variable doesn’t even require an instance of the
class in order to exist. Importantly, it is good syntax to refer to static member functions
through the use of a class name (class_name::x; rather than instance_of_class.x;). To
access the static member, you use the scope operator, ::, when you refer to it through
the name of the class. Note that static class variables must be initialized (a value needs
to be assigned), but cannot be initialized inside the class.

● Static member functions of a class. Static member functions are functions that do not
require an instance of the class, and are called the same way you access static member
variables: with the class name rather than a variable name (e.g.
a_class::static_function(); rather than an_instance.function();). Static member functions
can only operate on static members, as they do not belong to specific instances of a
class.

class user
{

 private:
 int id;
 static int next_id; //static variable declaration (initialized outside class)

 public:
 static int next_user_id()
 {
 next_id++; //increment static variable
 return next_id; //return static variable
 }
 /* More stuff for the class user */
 user()
 {
 id = user::next_id++; // increment static variable on object construction
 }
};

int user::next_id = 0; //must include type of static variable when setting it

2.9.4 Local and Global Variable Initialisation

Local variables are declared within function or block of code.

Global variables are declared outside of functions, usually at the top of the program.

When a local variable is defined, it is not initialized by the system, you must initialize it yourself
Global variables are initialized automatically by the system when you define them as follows:

Data Type Initializer

int 0

char '\0'

float 0

double 0

pointer NULL

Moreover, file-scope and function-scope static variables are initialized automatically to 0 (or
NULL, which is a #define for 0). If the static variable is an array or struct, all members of the
variable are also initialised to 0.

Overall, it is good programming practice to initialize variables properly.

2.9.5 Global Access Summary

If you want to use a variable in multiple files, you should put the declaration of the variable using
the extern keyword in one header file, and then include that header file in all source files that
need that variable. Then you should put the definition of that variable in one source file that is
linked with all the files that use that variable.

If you want to use a function across multiple source files, you should declare the function in one
header file (.h) and then put the function definition (prototype) in one source file (.c or .cpp). All
code that uses the function should include the .h file.

If you want to use a class in multiple files, you should put the class definition in a header file and
define the class methods in a corresponding source file (you an also use inline functions for the
methods).

2.9.6 Side Note: Global Access in C#

In C#, which is strictly object-oriented, classes are declared as part of namespaces. If no
namespace is declared, Visual Studio will put all classes in the same default namespace. If two
different files (in the same project) are using the same namespace, they have access to the class
declarations in both files. Classes can be declared as public or internal. If a class is declared as
internal, it can only be instantiated in the same file. Classes can also be accessed between
different projects (this needs extra code).

Different rules apply to nested classes (classes declared within other classes). In this case, the
nested classes (or structs declared within the base class) can be declared as public, protected
internal, protected, internal, or private.

2.10 Declaration vs Definition

A declaration provides basic attributes of a symbol: its type and its name. A definition provides all
of the details of that symbol--if it's a function, what it does; if it's a class, what fields and methods
it has; if it's a variable, where that variable is stored. Often, the compiler only needs to have a
declaration for something in order to compile a file into an object file, expecting that the linker can
find the definition from another file. If no source file ever defines a symbol, but it is declared, you
will get errors at link time complaining about undefined symbols.

2.11 Modifier Types

const Variables of type const cannot be changed by your program during execution. They must be
initialized at the same time as they are declared.

volatil
e

The modifier volatile tells the compiler that a variable's value may be changed in ways not explicitly
specified by the program.

restrict A pointer qualified by restrict is initially the only means by which the object it points to can be
accessed. C++ does not have standard support for restrict, but many compilers have
equivalents that usually work in both C++ and C, such as the GNU Compiler Collection's
and Clang's __restrict__, and Visual C++'s __restrict and __declspec(restrict).

http://www.cprogramming.com/tutorial/lesson13.html

2.12 Storage Classes

A storage class defines the scope (visibility) and life-time of variables and/or functions within a
C++ Program. These specifiers precede the type that they modify. There are following storage
classes, which can be used in a C++ Program

● auto: automatically determine variables type, based on the expression (e.g. auto c =

a+b, where a and b are of type int, would assign type int to c).
● register: used to define local variables that should be stored in a register instead of

RAM. This means that the variable has a maximum size equal to the register size
(usually one word) and can't have the unary '&' operator applied to it (as it does not have
a memory location). The register should only be used for variables that require quick
access such as counters. It should also be noted that defining 'register' does not mean
that the variable will be stored in a register. It means that it MIGHT be stored in a register
depending on hardware and implementation restrictions.

● static: see previous sections.
● extern: see previous sections.
● mutable: applies only to class objects, which are discussed later in this tutorial. It allows

a member of an object to override ‘constness’. That is, a mutable member can be
modified by a const member function.

2.13 Operators
An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C++ is rich in built-in operators and provides the following types of operators:

● Arithmetic Operators (+,-,*,/, ++, -- etc.)
● Relational Operators (<,>,== etc.)
● Logical Operators (&&,||,!)
● Bitwise Operators (&,|, <<,>> etc.)
● Assignment Operators (=, +=, *= etc.)

Misc Operators:

Operator Description

sizeof sizeof operator returns the size of a variable in bytes. For example,
sizeof(a), where a is integer, will return 4.

Condition ? X : Y Conditional operator. If Condition is true ? then it returns value X : otherwise
value Y

, Comma operator causes a sequence of operations to be performed. The
value of the entire comma expression is the value of the last expression of
the comma-separated list.

. (dot) and -> (arrow) Member operators are used to reference individual members of classes,
structures, and unions.

Cast Casting operators convert one data type to another.

& Reference operator & returns the address of an variable. For example &a;
will give actual address of the variable.

* Pointer operator * is pointer to a variable.

http://www.tutorialspoint.com/cplusplus/cpp_member_operators.htm
http://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm
http://www.tutorialspoint.com/cplusplus/cpp_comma_operator.htm
http://www.tutorialspoint.com/cplusplus/cpp_sizeof_operator.htm
http://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm
http://www.tutorialspoint.com/cplusplus/cpp_casting_operators.htm
http://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm

As in C, C++ has operator precedence rules.

2.14 Math Operations and Random Numbers

C++ has a rich set of mathematical operations, which can be performed on various numbers. To
utilize these functions you need to include the math header file <cmath>. Examples include
cos(), sin(), tan(), log() and sqrt(). To utilize random number generators, include the
<cstdlib> header file. Random functions include rand() and srand().

2.15 Function/Class Libraries, Header Files and Namespaces

As C++ is a mid-level programming language, it contains both standalone function libraries
(function accessed directly using their names) and class libraries with special functionality
(parameters and methods; accessed via class instances and static methods). Both types of
libraries are located in system header files, which can be included in any program that requires
a given functionality. Header files are included using the #include <> command.

An example of libraries located in headers are the <cstdlib> function library, and the <random>
class library. Both libraries contain the functionality required to generate random numbers, but
each is accessed differently.

Libraries can be further organised using namespaces. Namespaces may contain declarations of
variables, functions and classes. A namespace definition begins with the
keyword namespace followed by the namespace name as follows:

namespace namespace_name {
 // code declarations
}

A namespace can be defined in several parts and so a namespace is made up of the sum of its
separately defined parts. The separate parts of a namespace can be spread over multiple files. If
we want to use a specific namespace within a library, we should place ‘using namespace_name’ at
the top of our code.

Note that the header files contain only the declarations of the variables, functions and classes,
and the corresponding definitions are hidden away in the library source files. These definitions
are located by the linker after compilation.

Note that similar access modifier rules apply to variables placed inside namespaces, as they do
to variables placed in the global namespace (in general code, without specifying the namespace
explicitly). If a variable is declared as external (which it also is by default) in a namespace in a
header file, then it will remain global only in that namespace. It must then be defined in one of
the .cpp files, in the same namespace (with the header file included). If on the other hand, you
declare a variable as static inside a .h file (within or without namespace; doesn't matter), and
include that header file in various .cpp files, the static variable becomes locally scoped to each of
the .cpp files. Every .cpp file that includes that header will have its own copy of that variable.

Similar rules apply to function and class declarations placed inside namespaces of header files.
These function and class methods must then be defined in the namespace in one of the .cpp
files, with the declaration header file included. Whenever these functions or classes are to be
used, the header file is included, and the using namespace_name command is placed at the top of
the code.

2.16 Loops

While, For, Do While, Nested Loops, Break, Continue, Infinite Loops.

2.17 Decision Making

If, else, nested if else, switch, nested switch. The conditional operator ? : can be used to
replace simple if...else statements.

2.18 Arrays

An array stores a fixed-size sequential collection of elements of the same type. An array is used
to store a collection of variables of the same type. Arrays are declared as follows:

datatype arrayName[arraySize];

Arrays are initialized as follows:

datatype arrayName[] = {value1,value2,value3,...};

Arrays are accessed as follows:

double salary = balance[9];

It is also possible to declare and initialise multidimensional arrays, assign pointers to arrays,
and pass arrays to functions by pointer.

2.19 Strings

A string is a one-dimensional array of characters which is terminated by a null character '\0'.
Strings can be declared as follows:

char greeting[] = "Hello";

The C++ compiler automatically places the '\0' at the end of the string when it initializes the array.

C++ supports a wide range of functions that manipulate null-terminated strings (e.g. strcpy(),
strcat() etc.)

The Standard C++ library also includes a ‘string’ class, that supports the standard string
operations, and additionally provides much more functionality:

string str1 = "Hello"; //compiler reads this as string str1 = new string(“Hello”);
string str2 = "World";
string str3;
str3 = str1 + str2; //compiler recognizes overloaded operator, specified in class methods

2.20 Structures

Declared, defined and accessed in the same way as in C (using dot . operator). Structures can
be passed to functions by value (entire copies), or by pointer to struct (in which case the entries
are accessed using the arrow -> operator). Typedef has a special use with structures, in that the
type and entire structure declaration can be assigned to a name:

typedef struct
{

 char title[50];
 char author[50];
 char subject[100];
 int book_id;
} Books;

2.21 Functions

Various names: function, method, sub-routine or procedure.

The function definition contains the main body of the code. It can be placed anywhere in the
program (top or bottom of file, different file), as long as the function declaration is made
available at the top of the code (so the linker can link the declaration to the definition after
compilation is finished).

return_type function_name(param_type1 param1, param_type2 param2, ...)
{

 //body of the function
}

A function declaration (prototype), tells the compiler about the function name, parameter
types, and output type. This should usually be included at the top of the code, before the function
is used, in order for the compiler to recognise the function name, output and parameter types
(the parameter names can but don’t need to be included):

return_type function_name(param_type1, param_type2)

When you define a function, you can specify a default value for each of the last parameters. This
value will be used if the corresponding argument is left blank when calling to the function:

int sum(int a, int b=20)
{

 // b will be set to 20 if value not specified in function call (e.g. sum(a)).
 int result;
 result = a + b;
 return (result);
}

2.22 Main Function

The main function must be declared as a non-member function in the global namespace. This
means that it cannot be a static or non-static member function of a class, nor can it be placed in
a namespace (even the unnamed namespace).

The name main is not reserved in C++ except as a function in the global namespace. You are
free to declare other entities named main, including among other things, classes, variables,
enumerations, member functions, and non-member functions not in the global namespace.

You can declare a function named main as a member function or in a namespace, but such a
function would not be the main function that designates where the program starts.

The main function cannot be declared as static or inline. It also cannot be overloaded; there
can be only one function named main in the global namespace.

The main function cannot be used in your program: you are not allowed to call the main function
from anywhere in your code, nor are you allowed to take its address.

The return type of main must be int. No other return type is allowed (this rule is in bold
because it is very common to see incorrect programs that declare main with a return type
of void; this is probably the most frequently violated rule concerning the main function).

There are two declarations of main that must be allowed:

int main() // (1)
int main(int, char*[]) // (2)

In (1), there are no parameters.

In (2), there are two parameters and they are conventionally named argc and argv, respectively.
argv is a pointer to an array of C strings (which is actually an array of pointers to strings)
representing the arguments to the program. argc is the number of arguments in the argv array.

Usually, argv[0] contains the name of the program, but this is not always the
case. argv[argc] is guaranteed to be a null pointer.

Note that since an array type argument (like char*[]) is really just a pointer type argument in
disguise, the following two are both valid ways to write (2) and they both mean exactly the same
thing:

int main(int argc, char* argv[]) //second argument is pointer to array of pointers
int main(int argc, char** argv) //second argument is pointer to a pointer

Some implementations may allow other types and numbers of parameters; you'd have to check
the documentation of your implementation to see what it supports.

main() is expected to return zero to indicate success and non-zero to indicate failure. You are
not required to explicitly write a return statement in main(): if you let main() return without an
explicit return statement, it's the same as if you had written return 0;. The following
two main() functions have the same behaviour:

int main() { }
int main() { return 0; }

2.23 Pointers and References

In C++ it is important to distinguish between pointers and references. Whereas in C only
pointers are used, both the pointer and reference variables can be used in C++.

A reference, like a pointer, is a variable that you can use to refer indirectly to another variable. A
reference declaration has essentially the same syntactic structure as a pointer declaration. The
difference is that while a pointer declaration uses the * operator, a reference declaration uses the
& operator.

For example:

int i = 3;

int *ptr_i = &i;

int &ref_i = i;

ptr_i is a variable of type ‘pointer to int’, whose initial value is the address of variable i.

ref_i is a variable of type ‘reference to int’, whose initial value is the address of variable i.

The big difference between pointers and references is that you must use an explicit * operator to
dereference a pointer, but you don't use an operator to dereference a reference. Thus,
assignments such as:

*ptr_i = 4;

ref_i = 4

both change the value of i to 4.

This difference in appearance is significant when you're choosing between pointers and
references for function parameter types and return types. This is especially true in functions that
declare overloaded operators.

2.23.1 Pointers and References: Overloaded Operators

We want to overload the ++ operator, to be used with the following enum type:

enum day {Sunday, Monday, Tuesday, Wednesday}; day x;

In this case, the expression ++x does not compile. If you want it to, you must define a function
named operator++ which accepts day as an argument.

Invoking ++x should change the value in x. Therefore, declaring operator++ with a parameter of
type day, as in:

day operator++(day d);

won't have the desired effect. This function passes its argument by value, which means the
function sees a copy of the argument, not the argument itself. For the function to alter the value
of its operand, it must pass that operand either by a pointer or by a reference.

Passing the argument by a pointer, as in:

day *operator++(day *d);

would let the function alter the value of the day by storing the incremented value into *d.
However, you would then invoke the operator using an expression such as ++&x, which doesn't
look right.

The proper way to define operator++ is with a reference as the parameter type:

day &operator++(day &d)

{

d = (day)(d + 1);

return d;

}

Using this function, expressions such as ++x have the proper appearance as well as the proper
behaviour.

Passing by reference is not just the better way to write operator++, it's the only way. The
following declaration will not compile:

day *operator++(day *d);

Every overloaded operator function must either be a member of a class, or have a
parameter of type T, T &, or T const &, where T is a class or enumeration type.

C++ does not let you overload operators that redefine the meaning of operators for built-in
types, including pointer types. Thus, you cannot declare:

int operator++(int i); //error

which attempts to redefine the meaning of ++ for int, nor can you declare:

int *operator++(int *i); //error

which attempts to redefine ++ for int *.

2.23.2 Pointers and References: Const Pointers and References

In C++ (and C), you can add a type modifier const to a pointer, indicating that the value of the
pointer (i.e. the address of the variable it points to) cannot change over it’s lifetime; the pointer
can only point to that variable. It is important to distinguish constant pointers from pointers to a
const (in which case the address in the pointer can be changed):

char * const a;

*a is writable, but a is not; in other words, you can modify the value pointed to by a, but you
cannot modify a itself; a is a constant pointer to char. const_cast can be used to cast away the
constness of the pointer in this case, as the variable it points to is not constant.

const char * a;

a is writable, but *a is not; in other words, you can modify a (pointing it to a new location), but you
cannot modify the value pointed to by a.

In C++, references are inherently declared with the const modifier, meaning that they cannot be
re-binded once they are bound to a variable; there is no notation in C++ for re-binding a
reference. Since you can't change the reference after you bind it, you must bind the reference at
the beginning of its lifetime. Otherwise, the compiler will produce an error.

2.23.3 Pointers and References: Null References

Pointers, even constant pointers, can have a value of NULL. In C and C++, NULL is a #define for
the an integer constant 0. Thus setting a value to NULL is equivalent to setting it to 0. A null
pointer doesn’t point to anything. This difference suggests that if you want your function to avoid
receiving a NULL pointer, you should use a reference as a parameter type.

2.23.4 Pointers and References: Readability

Passing by pointer allows you to explicitly see at the call site whether the object is passed by
value or by reference:

func(ref); // Is ref passed by value or by reference? Need to check func() definition.
func2(&ptr); // func2 passes "by pointer" - no need to look up function definition.

2.23.5 Returning Pointers and References

In addition to accepting pointers and references as parameters, functions may also return
pointers or references. As returning a pointer or reference to an automatic variable, which
disappears after a function is complete, would create an undefined behaviour, the variable must
either be static inside the function, or be a global/static variable with a file scope.

If the variable that the pointer points to is in a different file, it must be declared as static in the
target function. The static variable will persist in the internal buffer, until the function is called
again.

2.23.6 Pointers to Arrays, Structures and Classes

Pointers are closely related to arrays, and are therefore commonly used with for array
operations. Once the address of the first element of an array is assigned to a pointer, pointer
arithmetic (*(ptr++),*(ptr--), *(ptr+1), ptr[] etc.) can be used to access the elements of the array.

Passing an array to a function in C and C++ is equivalent to passing the address of the first
element of the array (i.e. passing by pointer). The address must be assigned to a pointer in the
function arguments. The array can then be accessed using pointer arithmetic (*(ptr+1), *(ptr++),
or ptr[]; which the compiler reads as equivalent). Pointers to two-dimensional arrays are
declared as follows: int** ptr (pointer to pointer), and the array is accessed through the pointer
as e.g. ptr[10][8].

It is also possible to declare an array of pointers, and pointers to other pointers (e.g. int
**ptr).

There is also a useful –> operator, used to access the elements of a structure or class, via a
pointer to the structure or class.

2.23.7 Pointers to Functions

A function pointer is a variable that stores the address of a function, and allows for the function to
be called via the pointer. The pointer can be passed into another function or can be used to set
up Callback functions (functions that are invoked when a particular event happens; the callback
function is called, and this notifies your code that something of interest has taken place).

The syntax for declaring a function pointer is as follows:

output_type (*function_name)(input_type(s));

2.24 Date and Time

The C++ standard library inherits data and time manipulation libraries from C. These are located
in the <ctime> header file. There are four time-related types: clock_t, time_t, size_t, and tm,
which are returned by the library functions either by value or in the form of a pointer. The
functions can also return a pointer to a date/time string. The types clock_t, size_t and time_t are
capable of representing the system time and date as some sort of integer. The structure
type tm holds the date and time in the form of a C structure having the following elements

struct tm {
 int tm_sec; // seconds of minutes from 0 to 61
 int tm_min; // minutes of hour from 0 to 59
 int tm_hour; // hours of day from 0 to 24
 int tm_mday; // day of month from 1 to 31
 int tm_mon; // month of year from 0 to 11
 int tm_year; // year since 1900
 int tm_wday; // days since sunday int tm_yday; // days since January 1st
 int tm_isdst; // hours of daylight savings time
}

2.25 Basic Input/Output

C++ I/O occurs in streams, which are sequences of bytes. If bytes flow from a file or a device
like a keyboard, a disk drive, or a network connection etc. to main memory, this is called input
stream and if bytes flow from main memory to a file or a device like a display screen, a printer, a
disk drive, or a network connection, etc, this is called an output stream.

The following three headers contain the important input/output libraries in C++: <iostream>,
<iomainp> and <fstream>. The <fstream> header contains the services required for
used-controlled file processing (input/output to/from files).

2.25.1 Standard Output Stream (cout)

The predefined object cout is an instance of the ostream class. The cout object is said to be
"connected to" the standard output device, which usually is the display screen; although the
output stream can be redirected to a file using services from the <fstream> header.

cout is used in conjunction with the stream insertion operator, which is written as <<. Explicit
instantiation of the cout class is not required in this case – the compiler interprets cout as an
instantiation.

The C++ compiler also determines the data type of variable to be output and selects the
appropriate stream insertion operator (<<) to display the value (using operator overloading
methods, which also overload each other depending on input type).

<< endl is used after cout, which adds a new line to the output. endl is a function in the std
namespace. Thus the << operator redirects the output stream of the function to the output.

2.25.2 Standard Input Stream (cin)

The predefined object cin is an instance of istream class. The cin object is said to be attached
to the standard input device, which usually is the keyboard. The cin is used in conjunction with
the stream extraction operator, which is written as >>.

The >> operator is used to assign the input stream to a variable. The C++ compiler also
determines the data type of the entered value and selects the appropriate stream extraction
operators (overloaded method) to extract the value and store it in the given variables.

The stream extraction operator >> may be used more than once in a single statement. To
request more than one datum you can use the following:

cin >> name >> age;

2.25.3 Standard Error Stream (cerr)

The predefined object cerr is an instance of ostream class. The cerr object is said to be
attached to the standard error device, which is also a display screen but the object cerr is
un-buffered and each stream insertion to cerr causes its output to appear immediately. cerr is
also used in conjunction with the stream insertion operator <<.

2.25.4 Standard Log Stream (clog)

The predefined object clog is an instance of ostream class. The clog object is said to be
attached to the standard error device, which is also a display screen but the object clog is
buffered. This means that each insertion to clog could cause its output to be held in a buffer until
the buffer is filled or until the buffer is flushed (done using additional commands). The clog is
also used in conjunction with the stream insertion operator <<.

2.25.5 cout vs cerr vs clog

cout, cerr and clog are different output streams. Each of the streams can be redirected
independently, using the rdbuf() class method. In general cout is used for actual program output,
clog is used for logging information, and cerr is used for error information. The difference
between clog and cerr, is that clog is buffered (can hold input stream without displaying it – done
using additional commands), whilst cerr is not (displays input stream immediately).

3 C++ Object Oriented

The main purpose of C++ programming is to add object orientation to the C programming
language and classes are the central feature of C++ that supports object-oriented programming
and are often called user-defined types.

3.1 Classes and Objects

Objects are instances of classes.

Classes are blueprints of objects, and define what the object will contain (the variables), what
operations can be performed on the object (the functions), and the access to these components
(using access modifiers). The variables and methods within a class are referred to as the
members of the class.

3.1.1 Basic Syntax

#include <iostream>

using namespace std;

class Line
{

 //Public variable and function declarations (can be accessed from class instance)
 public:
 void setLength(double len);
 double getLength(void);
 Line(double len); //Class constructor function

 //Private variable and function declarations (accessed only through member functions)
 private:
 double length;
};

/*Member function definitions, including the constructor function, defined outside of the
class declaration, using the scope resolution operator :: */
Line::Line(double len)
{

 cout << "Object is being created, length = " << len << endl;
 length = len; //set private class member to value passed in constructor
}

void Line::setLength(double len)
{

 length = len;
}

double Line::getLength(void)
{

 return length;
}

// Main function
int main()
{

 Line line(10.0); //create class instance and pass value to class constructor

 //call
 cout << "Length of line : " << line.getLength() <<endl;

 // set line length again
 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 return 0;
}

3.1.2 Class Access Modifiers and Inheritance

The following class access modifiers can be used in C++, in order to achieve the desired level of
encapsulation (how much is hidden from the outside world) and abstraction (i.e. defining what
can and cannot be interacted with by the user):

● public: public members of a class (variables and functions) can be accessed directly
from a class instance (i.e. object), using the direct member access operator ‘.’.

● private: private members of a class can only be accessed via the class member
functions (which need to be public in order to be accessed from an instance). private
members can also be accessed from the member functions of classes declared as
friends of the class. By default, all class members are private.

● protected: protected members of a class can accessed via the class member functions
of the class declaring them, or via the member functions of the class that derives (and
inherits) from it. Protected members can also be accessed from the member functions of
classes declared as friends of the base class or the derived class.

If any variable or function (regardless of access modifiers) is declared as static, it can be
accessed directly (without creating a class instance), using the scope resolution operator (::).
Static functions are only allowed to modify static variables.

class foo
{
 private:
 static int i;
};

int foo::i = 0;

In this case, it is important that the declaration is placed in a header file, while the definitions are
placed in .cpp files. If multiple class instances are created in the same or in different files, the
static variable persists in all these instances. If instead we would initialise it in the header file, and
the header would be included in multiple files, the linker would not be able to determine which
initialisation should be used; this would result in linker errors.

Moreover, class access modifiers can be used in inheritance, in order to define the access to the
variable or functions from within the derived class. The following example code summarises
the use of class access modifiers in C++:

class A
{
public:
 int x;
protected:
 int y;
 int func(int);
private:
 int z;
};

class B : public A
{
 // x is public – x can still be accessed from an instance of B
 // y is protected – classes deriving from B still have access to y
 // z is not accessible from B

 /* func is protected, it can only be accessed via public methods in either B or A. func
 still has access to the private variable z, declared in A. */

};

class C : protected A
{
 // x is protected – classes deriving from C still have access to x
 // y is protected – classes deriving from C still have access to y
 // z is not accessible from C
};

class D : private A
{
 // x is private – classes deriving from D will not have access to x, but D still does
 // y is private – classes deriving from D will not have access to y, but D still does
 // z is not accessible from D
};

Multiple inheritance is also supported in C++. It works in exactly the same way as single
inheritance does, but uses the following syntax:

class derivedClassName: accessSpecifier baseClassA, accessSpecifier baseClassB, ...

3.1.3 Member Functions

A member function of a class is a function that has its definition or its prototype within the class
definition like any other variable. It operates on any object of the class of which it is a member,
and has access to all the members of a class for that object.

Member functions can be defined within the class definition or separately using scope
resolution operator, ::. Defining a member function within the class definition declares the
function inline, even if you do not use the inline specifier. So either you can define a function as
below:

class Box
{

 public:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box

 double getVolume(void)
 {
 return length * breadth * height;
 }
};

Or, if you like you can declare the function in the class, and define it outside of the class using
the scope resolution operator, :: as follows:

double Box::getVolume(void)
{

 return length * breadth * height;
}

The second method is the recommended one, as class declarations should be separated from
member functions definitions – class declarations should be placed in a header file, which can be
reused in different files, while the definitions of the member functions should be placed in one of
.cpp files.

A public member function can then be called using the dot operator (.) on an object as follows:

Box myBox; // Create an object
myBox.getVolume(); // Call member function for the object

3.1.4 Constructor and Destructor

A class constructor is a special member function of a class that is executed whenever we
create new objects of that class (see Basic Syntax section for example). A constructor has the
exact same name as the class and it does not have any return type at all, not even void.
Constructors can be very useful for setting initial values for certain member variables.

The default constructor does not have any parameters, but if you need, a constructor can have
parameters. This helps you to assign initial values to the class variables at the time of its
creation. The variables can be initialised inside the constructor function using an initialization
list:

C::C(double a, double b, double c)
{

x = a;
y = b;
z = c;
}

 or using the following syntax:

C::C(double a, double b, double c): x(a), y(b), z(c)
{

 // no need to initialise x, y and z here
}

If one class inherits from another, the constructor takes the following from (as example):

ClassB(int a=0, int b=0):ClassA(a, b) //passes inputs to constructor of ClassA

A destructor is a special member function of a class that is executed whenever an object of it's
class goes out of scope (e.g. if instance was created only in function, which has now finished
execution) or whenever the delete expression is applied to a pointer to the object of that class. A
destructor will have exact same name as the class prefixed with a tilde (~) and it can neither
return a value nor can it take any parameters. The destructor can be very useful for releasing
resources before coming out of the program like closing files, releasing memories etc.

3.1.5 Dynamic Memory Allocation

Memory in a C++ program is divided into two parts:
The stack: At compile times, all variable declarations will take up memory on the stack.

The heap: Memory can also be allocated on the heap. This memory can be allocated and
released dynamically, i.e. when the program runs.

In C++, the new and delete keywords are used to allocate memory on the heap. The following
syntax is used to allocate memory dynamically for any data type (in this case a double):

double *pvalue = NULL; // Create pointer to double and initialise to NULL
pvalue = new double; // Allocate memory on the heap and store address in pointer
*pvalue = 1.1232135242143; // Dereference memory location and assign value
delete(pvalue); //release heap memory

When allocating and releasing heap memory for arrays, the syntax is as follows:

int* pvalue = NULL; // Pointer initialized with null
pvalue = new int[20]; // Request memory for the variable
pvalue[3] = 10; // equivalent to *(pvalue + 3) = 10;
delete [] pvalue; // release entire array memory associated with pointer

/* Multidimensional arrays */
int** pvalue = NULL; // Pointer initialized with null
pvalue = new int[20][10]; // Request memory for multidimensional array of ints
delete [] pvalue; // release entire array memory associated with pointer

When allocating memory for objects, the syntax is as follows:

Box* myBox = new Box;
Box* myBoxArray = new Box[4];

3.1.6 Copy Constructor

The copy constructor is a constructor which creates an object by initializing it with an object of
the same class, which has been created previously. The copy constructor is used to:

● Initialize one object from another of the same type.
● Copy an object to pass it as an argument to a function.
● Copy an object to return it from a function.

When copying an object of the same type, only the copy constructor will be called (not the normal
constructor). If a copy constructor is not defined in a class, the compiler itself defines one. If the
class has pointer variables and has some dynamic memory allocations, then it is a must to have
a copy constructor. The most common form of copy constructor is:

classname (const classname &obj) {
 // body of constructor }

where obj is a reference to an existing object, which is used to construct another object of the
same type. The use of the copy constructor and dynamic memory allocation are illustrated in the
following example:

#include <iostream>
using namespace std;

class Line
{

 public:

 int getLength(void); // can specify input as void, but don’t have to
 Line(int len); // simple constructor
 Line(const Line &obj); // the copy constructor
 ~Line(); // destructor
 private:
 int *ptr;
};

/* Member function definitions including constructor */
Line::Line(int len)
{

 cout << "Normal constructor allocating ptr" << endl;
 ptr = new int; //returns address of heap memory allocation
 *ptr = len; //dereferencing heap memory (store len in heap memory)
}

Line::Line(const Line &obj)
{

 cout << "Copy memory allocations made in constructor." << endl;
 ptr = new int;
 *ptr = *obj.ptr; // copy the value of len, stored in heap memory, into new heap memory
}

Line::~Line(void)
{

 cout << "Freeing memory!" << endl;
 delete ptr; //release memory in heap
}

int Line::getLength(void)
{

 return *ptr;
}

void display(Line obj)
{

 cout << "Length of line : " << obj.getLength() <<endl;
}

// Main function for the program
int main()
{

 Line line1(10);
 Line line2 = line1; // Call to copy constructor
 return 0;
}

3.1.7 Friend Keyword

The following can be defined using the keyword friend: function, member function, class, or class
template (see later notes).

A friend function of a class is defined outside that class' scope but it has the right to access all
private and protected members of the class. Even though the prototypes for friend functions
appear in the class definition, friends are not member functions. To declare a function as a friend
of a class, precede the function prototype in the class definition with keyword friend as follows:

#include <iostream>
using namespace std;

// forward declaration
class B;
class A {
 private:
 int numA;
 public:
 A(): numA(12) { } //same as A() {numA = 12}
 // friend function declaration
 friend int add(A, B);
};

class B {
 private:
 int numB;
 public:
 B(): numB(1) { }
 // friend function declaration
 friend int add(A , B);
};

// Function add() is the friend function of classes A and B
// that accesses the member variables numA and numB
int add(A objectA, B objectB)
{
 return (objectA.numA + objectB.numB);
}

int main()
{
 A objectA;
 B objectB;
 cout<<"Sum: "<< add(objectA, objectB);
 return 0;
}

When a class is made a friend class, all the member functions of that class becomes friend functions.
In the following program, all member functions of class B will be friend functions of class A. Thus, any
member function of class B can access the private and protected data of class A. But, member
functions of class A cannot access the data of class B.

class B;
class A
{
 // class B is a friend class of class A
 friend class B;
 … … …
}

class B
{
 … … …
}

3.1.8 Inline Functions

The C++ inline function is a powerful concept that is commonly used with classes. If a function
is inline, the compiler (at compile time) places a copy of the code of that function at each point
where the function is called. Therefore, any change to an inline function would require all clients
of the function to be recompiled; otherwise they would continue with old functionality.

To inline a function, place the keyword inline before the function name and define the function
before any calls are made to the function. The compiler can ignore the inline qualifier in event
that the function definition is more than one line.

The following example illustrates the use of inline functions:

#include <iostream>

using namespace std;

inline int Max(int x, int y)
{

 return (x > y)? x : y; //conditional operator used here
}

// Main function for the program
int main()
{

 cout << "Max (20,10): " << Max(20,10) << endl;
 cout << "Max (0,200): " << Max(0,200) << endl;
 cout << "Max (100,1010): " << Max(100,1010) << endl;
 return 0;
}

3.1.9 Pointer to Class

A pointer to a C++ class works in exactly the same way as a pointer to a structure. In order to
access the members (variables and functions) of a pointer to a class you use the member access
operator ->; just as you do with pointers to structures. As with all pointers, you must also initialize
the pointer before using it.

3.1.10 ‘this’ Class Pointer

Every object in C++ has access to its own address through an important pointer
called this pointer. The this pointer is an implicit parameter to all member functions. Therefore,
inside a member function, this may be used to refer to the invoking object, and access other
member functions using the arrow -> operator (as ‘this’ is a pointer to the object), e.g.:

return this->Volume();

called from a member function, where Volume() is another member function of the same object.

Static functions do not have a ‘this’ pointer, as they don’t belong to a particular instance of a
class. Friend functions also do not have a this pointer, because friends are not members of a
class.

In C++, ‘this’ has two main uses:

1. To pass *this or this as a parameter to other, non-class methods.

void do_something_to_a_foo(Foo *foo_instance);

void Foo::DoSomething()
{

 do_something_to_a_foo(this);
}

2. To allow you to remove ambiguities between member variables and function parameters.

This is common in constructors.

MessageBox::MessageBox(const string& message)
{

 this->message = message;
}

3.2 Function and Operator Overloading

3.2.1 Function Overloading

Object-oriented C++ allows you to specify more than one definition for a class member
function name or an operator in the same scope, which are called function overloading and
operator overloading respectively. The overloaded operator function can only take two objects
as input.

An overloaded declaration is a declaration that had been declared with the same name as a
previously declared declaration in the same scope, except that both declarations have different
arguments and different definition. You cannot overload function declarations that differ only by
return type.

When you call an overloaded member function or operator, the compiler determines the most
appropriate definition to use by comparing the argument types you used to call the function or
operator with the parameter types specified in the declarations. The process of selecting the
most appropriate overloaded function or operator is called overload resolution.

using namespace std;

class printData
{

 public:
 void print(int i) {
 cout << "Printing int: " << i << endl;
 }
 void print(double f) {
 cout << "Printing float: " << f << endl;
 }
 void print(char* c) {
 cout << "Printing character array: " << c << endl;
 }
};

int main(void)
{

 printData pd;

 pd.print(5); // Call print to print integer
 pd.print(500.263); // Call print to print float
 pd.print("Hello C++"); // Call print to print character array

 return 0;
}

3.2.2 Operator Overloading

You can redefine or overload most of the built-in operators available in C++. Overloaded
operators are functions with special names: the keyword operator followed by the symbol for the
operator being defined. As opposed to regular overloaded functions, operator overload functions
can be member or non-member functions. Operator overloading allows you to redefine the way
operator works for user-defined types only (objects, structures). It cannot be used for built-in types
(int, float, char etc.).

Like any other function, an overloaded operator has a return type and a parameter list. When
defined as a member function of a class, the syntax is as follows (for example):

// Overload + operator to add two Box objects.
Box operator+(const Box& b)
{

 Box box;
 box.length = length + b.length;
 box.breadth = breadth + b.breadth;
 box.height = height + b.height;
 return box;
}

This declares an addition operator that can be used to add two Box objects and return the final
Box object. In case we define the above function as a non-member function (outside of a class),
then we would have to pass two arguments for each operand as follows:

Box operator+(const Box&, const Box&);

3.3 Polymorphism

In C++, polymorphism is used to overload a function defined in the base class, by a function of
the same name and parameters (although the parameters can be different) in the derived class.
This is implemented using the virtual keyword. Depending on where the function is called from
(base or a derived class), the appropriate function (located in the correct class; base vs derived)
will be selected. This is referred to as dynamic linkage (function call linked to different definition
based on where it is called from).

#include <iostream>
using namespace std;

class Shape {

 protected:
 int width, height;

 public:

 Shape(int a=0, int b=0)
 {
 width = a;
 height = b;
 }

 virtual int area()

 {
 cout << "Parent class area :" <<endl;
 return 0;
 }
};

class Rectangle: public Shape{
 public:
 Rectangle(int a=0, int b=0):Shape(a, b) { }
 int area ()
 {
 cout << "Rectangle class area :" <<endl;
 return (width * height);
 }
};

class Triangle: public Shape{
 public:
 Triangle(int a=0, int b=0):Shape(a, b) { }
 int area ()
 {
 cout << "Triangle class area :" <<endl;
 return (width * height / 2);
 }
};

// Main function for the program
int main()
{

 Rectangle rec(10,7);
 Triangle tri(10,5);

 //calls function in rec object
 rec.area();
 //calls function in tri object
 tri.area();

 return 0;
}

3.4 Abstract Classes and Interfaces

C++ interfaces are implemented using abstract classes. A class is made abstract by declaring
at least one of its functions as a pure virtual function. In order to define a pure virtual function,
i.e. a virtual function in the base class that has no body, we can use the following syntax:

virtual int area() = 0;

● If a class contains variables and virtual functions with definitions, along with one or more pure
virtual functions, it is an abstract class. Abstract classes cannot be instantiated.

class AB {
public:

 virtual void f() = 0; //pure virtual function
};

● An interface is a class with no state variables and only pure virtual functions. Interfaces

classes cannot be instantiated. An interface describes the behavior or capabilities of a class
without committing to a particular implementation of that class.

The main purpose of abstract classes or interfaces is to provide an appropriate base class from which
other classes can inherit:

● A class inheriting from an interface needs to provide a definition for all pure virtual
functions.

● A class inheriting from an abstract class doesn’t need to re-define any of the virtual
functions in the abstract class, but needs to define the pure virtual functions.

● A class can inherit multiple interfaces, but cannot inherit multiple abstract classes.
● Classes that are not abstract or interfaces (i.e. classes that can be used to instantiate

objects) are referred to as concrete classes.

Depending on the requirements either an abstract class or an interface can be used:

● If you anticipate creating multiple versions of your class, each with slightly different
functionality, create an abstract class. Abstract classes provide a simple and easy way to
version your classes. The base class can be easily changed (e.g. by adding variables or
functions) without breaking the derived classes (which will also inherit the changes).

● On the other hand, once an interface is defined, it cannot be changed without breaking
the functionality of the derived classes, as the derived classes must provide a definition
for each pure virtual method in the base class. Therefore, changing an argument or
function name in the base class would require a corresponding change in the derived
class function.

● If the functionality you are creating will be useful across a wide range of disparate
objects, use an interface. Abstract classes should be used primarily for objects that are
closely related, whereas interfaces are best suited for providing common functionality to
unrelated classes. The unrelated classes can then inherit the bundle of function
declarations, and can define each function according to the functionality required in each
derived class.

Example of an abstract class:

#include <iostream>

using namespace std;

// Base class
class Shape {
 public:
 // pure virtual function providing interface framework.
 virtual int getArea() = 0;
 void setWidth(int w) {
 width = w;
 }

 void setHeight(int h) {
 height = h;
 }

 protected:
 int width;
 int height;
};

// Derived classes
class Rectangle: public Shape {
 public:
 int getArea() {
 return (width * height);
 }
};

class Triangle: public Shape {
 public:
 int getArea() {
 return (width * height)/2;
 }
};

int main(void) {
 Rectangle Rect;
 Triangle Tri;

 Rect.setWidth(5);
 Rect.setHeight(7);

 // Print the area of the object.
 cout << "Total Rectangle area: " << Rect.getArea() << endl;

 Tri.setWidth(5);
 Tri.setHeight(7);

 // Print the area of the object.
 cout << "Total Triangle area: " << Tri.getArea() << endl;

 return 0;
}

3.5 Exception Handling

● Try/Catch – try statements and catch exception if it occurs:

try

{ // protected code

}

catch(ExceptionType e) //can specify argument to catch any exception type

{ // code to handle ExceptionType exception

}

● Throw – throw a custom exception anywhere in the code.
● C++ provides an extended library of exceptions, located in the <exception> header file.

These provide a wide range of exceptions, each depending on the situation (e.g. bad
memory allocation when using the new keyword, or invalid input arguments to a
function).

● In C++, it is possible to define your own exceptions by inheriting and overriding the
exception class functionality.

3.6 Templates

A template is a feature in C++ that allows functions and classes to operate with generic types.
This allows a function or class to work on many different data types without being rewritten for
each one.

A function template behaves like a function except that the template can have arguments of
many different types (see example). In other words, a function template represents a family of
functions. The format for declaring function templates with type parameters is:

template <class identifier> function_declaration; //identifier can be any name (e.g. T)

template <typename identifier> function_declaration;

Both expressions have the same meaning and behave in exactly the same way. The latter form
was introduced to avoid confusion, since a type parameter need not be a class (it can also be a
basic type such as int or double). For example:

template <typename myType>

myType max(myType a, myType b) {

 return a > b ? a : b;
}

A template does not produce smaller object code (i.e. compiled code), compared to writing
separate functions for all the different data types used in a specific program.

A class template can be used to define the member functions of a class, based on the type of
data type used when creating an instance of the class. The following example illustrates the use
of class templates:

template <typename myType>
class Calc
{

 public:
 myType multiply(myType x, myType y);
 myType add(myType x, myType y);
};

template <typename myType>
myType Calc<myType>::multiply(myType x,myType y)
{

 return x*y;
}

template <typename myType>
myType Calc<myType>::add(myType x, myType y)
{

 return x+y;
}

main()

{

// Instantiating class
Calc <double> a_calc_class;
}

3.7 Preprocessor Directives

Preprocessor directives give instruction to the compiler to preprocess the information before the
actual compilation starts. All preprocessor directives begin with #, and only white-space
characters may appear before a preprocessor directive on a line. Preprocessor directives are not
C++ statements, so they do not end in a semicolon (;). There are a number of preprocessor
directives supported by C++, including #include, #define, #if, #else, #line:

● #include: used to include header files in source files.
● #define: used to create symbolic constants, called macros. The general form is:

#define macro-name replacement-text //(e.g. #define PI 3.14159)

#define can also be used to define function macros, as follows:

#define MIN(a,b) (((a)<(b)) ? a : b)

● Conditional Compilation: directives that can be used to selectively compile portions of
the source code. Directives include #ifdef (if defined), #ifndef (if not defined) and #if,
#elif, #else, #endif. These directives operate only on symbolic constants (i.e. #define).

#if defined(CREDIT)

 credit();

#elif defined(DEBIT)

 debit();

#else

 printerror();

#endif

● # and ## preprocessor operators:

o The # operator causes a replacement-text field of a #define to be converted to a
string surrounded by quotes:

#include <iostream>
using namespace std;

#define MKSTR(x) #x //MKSTR is the custom function name, #x is the body

int main ()
{

 cout << MKSTR(HELLO C++) << endl;

 return 0;
}

o The ## operator can be used to concatenate an expression (not strings, the

expression itself, which the compiler interprets):

#include <iostream>
using namespace std;

#define concat(a, b) a ## b
int main()
{

 int xy = 100;

 cout << concat(x, y);
 return 0;
}

● C++ also has a number of built-in macros, such as __LINE__, __FILE__, __DATE_ and
__TIME__, which return the line number of the program, the file name, the system date
and the system time respectively.

3.8 Other Concepts in C++

Other concepts in C++ include:

● Signals: interrupts delivered to a process by the operating system, which can terminate a
program prematurely. You can generate interrupts by pressing Ctrl+C on a UNIX, LINUX,
Mac OS X or Windows system. There are signals which cannot be caught by the
program, but there is also a list of signals which you can catch in your program and can
take appropriate actions based on the signal. These signals are defined in the C++
header file <csignal>.

● Multithreading: simultaneous execution of different parts of a program. Each part of the
program is referred to as a thread.

● Web Programming: exchange of information between a custom script and a web server,
governed by a set of standards called Common Gateway Interface (CGI).

